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ABSTRACT

Radar imaging of rotating blade-like objects, such as helicopter rotors, using narrowband
radar has lately been of significant interest; these objects cannot be adequately described
by the classic point-scatterer model. Recently, a novel ‘tilted-wire’ scatterer model has been
developed that can provide an accurate and sparse representation of radar returns from such
objects.

Following a literature review on compressed sensing algorithms, covering both greedy and
lp minimisation methods (0 < p ≤ 1), the report focuses on a comparative study of various
greedy pursuit algorithms, using both simulated and real radar data, with a particular em-
phasis on the use of the tilted-wire scatterer model. It is observed that the greedy algorithms
that select multiple atoms at the matched-filtering stage do not perform well when the atoms
used in the dictionary are significantly correlated. Amongst the greedy algorithms, Ortho-
gonal Matching Pursuit (OMP) exhibits the best performance, closely followed by Conjugate
Gradient Pursuit (CGP), which has a much smaller computational complexity than OMP.
In applications where the tilted-wire model requires large dictionaries and large CPI atoms,
CGP is the preferred option.
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A Review of Sparsity-Based Methods for Analysing

Radar Returns from Helicopter Rotor Blades

Executive Summary
Signal analysis and radar imaging of fast-rotating objects such as helicopter rotor blades
are of particular research interest because these micro-Doppler signals cannot be processed
by conventional range-Doppler techniques and should be separated from other non-rotating
scattering components prior to further processing. In addition, the point-scatterer model,
which is commonly assumed in the development of various inverse SAR (ISAR) and radar
tomography approaches, is not always the most fitting model for the analysis of this type of
micro-Doppler signals. The novel tilted-wire model offers new possibilities to overcome the
limitations of the point-scatterer model; it however also introduces a new degree of complexity
which requires the use of state-of-the-art sparsity-based techniques.

Since the tilted-wire scatterer model can be used to facilitate an accurate sparse representation
of signals from rotating blades, a comprehensive review of known algorithms for sparse para-
meter estimation techniques is carried out, covering both greedy and lp minimisation methods
(0 < p ≤ 1). The report focuses on a comparative study of various greedy pursuit algorithms
using both simulated and real helicopter radar data, with an aim to accurately estimate the
tilted-wire parameters associated with a rotor blade. These parameters are presented as scat-
ter plots which show the orientation, length and tilt of the estimated wires used to represent
the rotor blade.

Amongst the greedy algorithms, the so-called Orthogonal Matching Pursuit (OMP) technique
exhibits the best performance, closely followed by Conjugate Gradient Pursuit (CGP), which
has a much smaller computational complexity than OMP. Important improvements and ex-
ploitation of these modern techniques will be published separately in the near future.
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1 Introduction

Compressed sensing (CS) has recently received remarkable interest thanks to its wide range of
applications in different research fields including electrical engineering, applied mathematics
and computer science. In radar imaging, CS techniques have been widely exploited in many
different problems such as sparse phase coherent imaging [1–3], wide-angle synthetic aperture
radar (SAR) imaging for anisotropic scattering [4–7], multichannel SAR imaging [8, 9], and
moving target indication [10, 11]. In this report, we are especially interested in the problem
of CS-based radar imaging of rotating blade-like objects and the performance of different
techniques for this problem.

Radar signals returned from rotating blade-like objects are usually grouped under the general
category of ‘micro-Doppler’ signals, where the Doppler frequency modulation due to the blade
rotation can be very complex and extensive [12–14]. Such micro-Doppler signals can not be
processed by conventional range-Doppler techniques and should be separated from other non-
rotating scattering components prior to further processing. In addition, the point-scatterer
model, which is commonly assumed in the development of different inverse SAR (ISAR) and
radar tomography approaches, are not always the most fitting model for the analysis of micro-
Doppler signals.

In contrast to point-scatterers with isotropic scattering characteristics, rotating blade-like
objects behave similarly to radial antennas with a lobe structure in their reflectivity pattern.
All conventional radar imaging theories based on the ideal point-scatterer are thus not directly
applicable. A plausible extension to the point-scatterer model is the ‘tilted-wire scatterer’
model, where the basic scatterer is modeled as a uniform straight wire characterised by the
position of its centre and its shape [13, 14]. The centre position vector may be in 2D or 3D
space, while the shape parameters include at least the finite length and the tilt angle of the
wire relative to the radial direction.

Rotating blades, in particular, can be approximated as a collection of such scatterers, motiv-
ated by the fact that the blades may exhibit complex bending and twisting during high-speed
rotational motion, and thus a strictly radial wire model may not be sufficient to character-
ise the scattering from the blades. More importantly, the tilted-wire model facilitates the
application of CS techniques to the problem of radar imaging of rotating blades [14].

The fundamental problem in compressed sensing is to recover an unknown vector x ∈ CN

from a small number of noisy linear measurements

y = [y1, . . . , yM ]T = Φx+ n ∈ CM , (M � N). (1)

Here, Φ ∈ CM×N is a known sensing matrix with columns normalised to unity and n is a noise
vector with energy bound of ‖n‖2 < ε. Since the sensing matrix Φ provides an over complete
basis, a unique solution cannot be determined using the conventional inverse transform of Φ.
However, if x is sparse or compressible (i.e., well-approximated as being sparse), CS theory
enables the recovery of x from very few measurements in an effective and robust manner [15–
24]. The sparse recovery problem is formulated as finding the sparsest solution of x:

x̂ = arg min
x∈CN

‖x‖0 subject to x ∈ B(y) (2)

UNCLASSIFIED
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where the constraint x ∈ B(y) ensures that the solution x̂ is consistent with the measure-
ments y. If the measurements are noise-free, we can set

B(y) = {x : Φx = y}. (3)

Otherwise, if the measurements are contaminated by bounded noise, we can instead set

B(y) = {x : ‖y −Φx‖2 < ε}. (4)

Solving the l0 minimisation problem (2) is NP-hard, i.e., a highly non-convex combinatorial
optimisation with exponential complexity, and thus is computationally intractable for practical
applications [15–24]. An attractive alternative is to consider an l1-minimisation problem

x̂ = arg min
x∈CN

‖x‖1 subject to x ∈ B(y), (5)

which, in contrast to (2), is a convex optimisation problem (given that B(y) is convex) and can
be solved effectively in polynomial time with standard convex optimisation techniques [20, 21,
23]. Importantly, it is well-known in the literature that the l1-minimisation (5) is equivalent
to the l0-minimisation (2) for the sensing matrices satisfying the so-called restricted isometry
property (RIP) with a constant parameter [16–19, 23, 24]. A matrix Φ satisfies the RIP of
order K if there exists a δK ∈ (0, 1) such that

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22 (6)

holds for all K-sparse vectors x, i.e., vectors with at most K nonzero components.

Although the l1-minimisation formulation based on convex optimisation provides a power-
ful framework for developing computationally tractable CS algorithms, the complexity of
l1-minimisation is still prohibitive for real-time applications [24–26]. Iterative greedy al-
gorithms [23–32] have recently received significant attention as attractive alternatives to con-
vex optimisation techniques thanks to their low complexity and simple geometric interpreta-
tion.

The main principle behind the greedy algorithms is that they identify the support of x iter-
atively, where one or more elements are selected at each iteration based on some greedy rules
and their contribution is subtracted from the measurement y. The main advantage of the
greedy algorithms is that they are more computationally efficient than the l1-minimisation
algorithms. In terms of performance, some of the greedy algorithms have been shown to
have theoretical performance guarantees that are comparable to those guarantees derived for
convex l1-norm optimisation approaches [21].

Although the CS literature has primarily focused on the l1-minimisation and greedy pursuit
algorithms, there exists another class of sparse recovery algorithms based on lp-minimisation
with p < 1. The lp-minimisation with p < 1 was shown empirically in [33] to produce exact
recovery with fewer measurements than with p = 1. It was also theoretically proven in terms
of the RIP of Φ that the sufficient condition for exact recovery of x via the lp-minimisation is
weaker for smaller p [34]. Although the lp-minimisation with p < 1 is a non-convex problem
and thus computationally intractable as described in the literature [34], the lp-minimisation
with p < 1 can be effectively solved via iteratively re-weighted least squares (IRLS) [34,
35].

2
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In this report, we first review these three classes of sparse recovery algorithms based on greedy
pursuit, l1-minimisation, and lp-minimisation with p < 1. We then focus our attention on the
greedy pursuit algorithms and present a comparative performance study of these algorithms
in the particular problem of analysing backscatter signals from rotating blades. The report is
organised as follows. A survey on the CS literature is presented in Section 2. The comparative
performance study among various greedy pursuit algorithms for radar imaging of rotating
blades is presented in Section 3. The report concludes in Section 4 with a brief summary of
the main findings.

2 Summary of Compressed Sensing Algorithms

This section summarize all three major classes of algorithms known as greedy, l1-minimisation,
and lp-minimisation algorithms. However, only the greedy algorithms will be studied and
discussed in great detail.

2.1 Greedy Algorithms

The greedy algorithms, which are conceptually simple and fairly straightforward, identify the
support of the unknown sparse vector x progressively. These algorithms usually start with an
initial estimate of

x̂[0] = 0, (7)

i.e. the support set – the indices of nonzero elements – of the initial estimate x̂[0] is Λ = ∅,
and an initial residual of

r[0] = y −Φ x̂[0] = y. (8)

At each iteration, one or more columns of Φ are selected based on the correlation values
between the columns of Φ and the residual r. The indices of the selected columns are then
added to the support set Λ, and the estimate x̂ as well as the residual r are also updated ac-
cordingly. The greedy algorithms repeat this procedure until a stopping criterion is triggered,
discussed in more detail in Section 2.1.7.

A number of variants of iterative greedy algorithms have been published in the literature
including the basic Matching Pursuit (MP) [27], Orthogonal Matching Pursuit (OMP) [28],
Stagewise OMP (StOMP) [25], Stagewise Weak OMP (SWOMP) [29], Generalised OMP
(gOMP) [26], Regularised OMP (ROMP) [23, 31], Compressive Sampling Matching Pur-
suit (CoSaMP) [32], Subspace Pursuit (SP) [24], Gradient Pursuit (GP) [30], Conjugate GP
(CGP) [30], and Stagewise Weak CGP (SWCGP) [29]. Some of these variants will be discussed
in further detail in the following sub-sections.

2.1.1 Basic Matching Pursuit (MP)

The simplest greedy algorithm is MP [27] which is summarised in Algorithm 1. At each
iteration, MP selects one column of Φ, which yields the largest correlation with the current

UNCLASSIFIED
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Algorithm 1 MP Algorithm

1: procedure Input: y, Φ. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: j∗ = arg maxj |cj |
7: Update:

8: x̂
[i]
j∗ = x̂

[i−1]
j∗ + cj∗

9: r[i] = r[i−1] −Φj∗cj∗

10: end for
11: end procedure

residual, and updates the set of coefficients x̂ accordingly. Here, the coefficient update

x̂
[i]
j∗ = x̂

[i−1]
j∗ + cj∗ (9)

may occur for a coefficient that has been updated in an earlier iteration. In other words,
MP may select a particular column of Φ multiple times and refine its coefficient to enhance
the approximation performance. The computational complexity of MP in each iteration is
dominated by the matrix vector product ΦT r[i−1] in the identification step which requires a
computation of O(MN) for unstructured matrices or O(N log(M)) for structured matrices
by exploiting fast Fourier transform (FFT)-based algorithms [21, 30]. In addition, finding the
largest element in c in the identification step and updating the residual r[i] require N opera-
tions and M operations respectively.

2.1.2 Orthogonal Matching Pursuit (OMP)

The OMP algorithm [28], a more sophisticated refinement of MP, is one of the most popular
greedy algorithms. The pseudo-code of OMP is summarised in Algorithm 2. The main
difference between OMP and MP is that, in each iteration, OMP projects y orthogonally onto
the columns of Φ associated with the current support set Λ[i], in a least-squares-error sense,
to obtain a new approximation of x. In other words, OMP minimises ‖y−Φx̂[i]‖22 over all x̂[i]

with support Λ[i]. Another difference is that OMP only selects an element maximally once
and the residual r[i] is always orthogonal to the current selected element set ΦΛ[i] as a result
of the least-squares estimation. This least-squares estimation makes OMP computationally
more demanding than MP. However, OMP provides a superior performance compared to MP,
particularly in terms of its convergence property.

The computational complexity of OMP depends on the actual implementation of the least-
squares estimation. For example, the QR factorisation approach requires 2Mk + 3M opera-
tions to obtain the least-squares solution where k is the size of the current support set [30].
It also depends on the number of iterations needed for signal recovery, i.e., in the order of
O(KMN) for K iterations [24, 26, 31]. This complexity is significantly smaller than that
of the l1-minimisation algorithms based on convex optimisation [23, 24, 36]. However, OMP
does not offer the strong theoretical guarantees as the l1-minimisation techniques [23, 31, 36].

4
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Algorithm 2 OMP Algorithm

1: procedure Input: y, Φ. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: j∗ = arg maxj |cj |
7: Merge Supports:
8: Λ[i] = Λ[i−1] ∪ j∗
9: Update:

10: x̂
[i]

Λ[i] = arg minx ‖y −ΦΛ[i]x‖2, where ΦΛ[i] are the atoms in current set Λ[i]

11: r[i] = y −ΦΛ[i] x̂
[i]

Λ[i]

12: end for
13: end procedure

It was demonstrated theoretically and empirically in [37] that OMP can reliably recover a
K-sparse signal for given M = O(K logN) noise-free measurements.

Specifically, for a Gaussian sensing matrix (its atoms are drawn independently from the stand-
ard Gaussian distribution), OMP can recover any K-sparse signal x with probability exceeding
(1− 2δ) given that δ ∈ (0, 0.36) and M ≥ CK log(N/δ) [37]. The constant C satisfies C ≤ 20
or can be reduced to C ≈ 4 for a large value of K. However, in contrast to l1-minimisation, the
recovery guarantees of OMP is nonuniform [23, 38, 39]. In particular, when M = O(K logN),
there is high possibility of existence of a K-sparse vector x for which OMP will select an
incorrect element at the first iteration for certain random matrices Φ [38, 39]. It has been
shown in [38] that uniform recovery guarantees for OMP are impossible for the natural random
sensing matrix Φ.

In addition, the conditions on the sensing matrices required by OMP are more restrictive than
the RIP condition [23, 24]. In particular, Tropp [40] showed that the sufficient condition for
OMP to recover a K-sparse x exactly from noise-free measurements is

µ <
1

2K − 1
(10)

where µ is the mutual coherence parameter defined by the maximum value of the modulus of
the inner product between two distinct columns of the sensing matrix Φ (commonly known as
the Mutual Incoherence Property (MIP) introduced in [41]). This result was then extended to
the case of noisy measurements in [42]. Note that if MIP holds then RIP also holds, but the
converse is not true. Thus the MIP condition is more restrictive than the RIP condition [42].
However, the advantage of the MIP over the RIP is that the MIP is more straightforward to
verify for any given matrix Φ [42].

Although the RIP has been proved in [43] to hold with high probability for the random con-
struction of the sensing matrix Φ, there is still probability of failure of the RIP for a particular
realisation of a random matrix. In addition, testing whether a given matrix satisfies the RIP
is NP-hard and computationally infeasible [44]. In terms of RIP, Wakin and Davenport [45]

UNCLASSIFIED
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Algorithm 3 StOMP and SWOMP Algorithms

1: procedure Input: y, Φ. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: J∗ = {j : |cj | ≥ λ[i]}
7: Merge Supports:
8: Λ[i] = Λ[i−1] ∪ J∗
9: Update:

10: x̂
[i]

Λ[i] = arg minx ‖y −ΦΛ[i]x‖2
11: r[i] = y −ΦΛ[i] x̂

[i]

Λ[i]

12: end for
13: end procedure

showed that the RIP of order K + 1 with

δK+1 <
1

3
√
K

(11)

is sufficient for OMP to exactly reconstruct any K-sparse signal from noise-free measurements.
This condition was then improved to [46]

δK+1 <
1√

K + 1
. (12)

2.1.3 Stagewise OMP (StOMP), Stagewise Weak OMP (SWOMP) & Gen-
eralised OMP (gOMP)

Although OMP is computationally cheaper than the l1-minimisation algorithms, it may still
not be the best choice for certain class of problems, especially for not very sparse signals
and in terms of computational complexity [25, 26, 29, 30]. The main reason for this is the
fact that OMP only selects a single column of the sensing matrix Φ (a single atom), at each
iteration and thus it must run at least as many iterations as the number of nonzero elements
in the solution. This computational issue motivates the selection of multiple atoms at a time,
as has been incorporated in a number of variants of OMP including StOMP [25], SWOMP
[29], and gOMP [26]. Although the computational complexity for one iteration of StOMP,
SWOMP and gOMP is similar to that of OMP, the StOMP, SWOMP and gOMP algorithms
require fewer iterations to obtain the same number of nonzero elements in the solution when
compared to OMP. This makes StOMP, SWOMP and gOMP computationally more effective
than OMP.

The maximum selection operation

Λ[i] = Λ[i−1] ∪ j∗, with j∗ = arg max
j

|cj | (13)

in OMP is replaced with a thresholding operation in StOMP and SWOMP as follows:

Λ[i] = Λ[i−1] ∪ {j : |cj | ≥ λ[i]} (14)

6
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Algorithm 4 gOMP Algorithm

1: procedure Input: y, Φ, L. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: J∗ = {indices of the L largest elements of c}
7: Merge Supports:
8: Λ[i] = Λ[i−1] ∪ J∗
9: Update:

10: x̂
[i]

Λ[i] = arg minx ‖y −ΦΛ[i]x‖2
11: r[i] = y −ΦΛ[i] x̂

[i]

Λ[i]

12: end for
13: end procedure

where λ[i] is the threshold at iteration i. The full algorithms of StOMP and SWOMP are
summarised in Algorithm 3. The two variants differ only in the choice for this threshold.

The threshold used in StOMP is given by

λ
[i]
StOMP =

t[i] ‖r[i−1]‖2√
M

(15)

where the typical value of the parameter t[i] is 2 ≤ t[i] ≤ 3. Two threshold strategies of t[i] were
proposed explicitly in [25] for the case of random sensing matrix Φ generated from a uniform
spherical ensemble, i.e. the columns of Φ are independently and identically distributed (i.i.d.)
points on the unit sphere. These strategies were motivated by classical detection criteria of
false alarm control and false discovery control. However, theoretical performance guarantees
of StOMP are not available for more general sensing matrices Φ.

Moreover, from the practical perspective, the choice of the parameter t[i] appears critical to
the performance of StOMP, but the question on the optimal selection of t[i] has not been
fully addressed in the literature [29]. It was demonstrated in [29] that StOMP sometimes
terminates prematurely when all inner products, i.e., |cj | for all values of j, fall below the
threshold λ[i]. In addition, the simulations in [29] showed mixed results on the performance
of StOMP.

The threshold used in SWOMP is given by

λ
[i]
SWOMP = αmax

j
{|cj |} (16)

where α ∈ (0, 1] is the ‘weakness parameter’. It is important to note that SWOMP enjoys a
weakened version of the performance properties of OMP [40].

In contrast, as summarised in Algorithm 4, gOMP selects a fixed number of atoms for each
iteration, i.e.

Λ[i] = Λ[i−1] ∪ {J∗(1), . . . , J∗(L)} (17)
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Algorithm 5 ROMP Algorithm

1: procedure Input: y, Φ, K. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: J = {indices of the K largest elements of c}
7: Regularise:
8: J∗ = arg maxJl

‖cJl
‖2

9: where Jl is all subsets of J with comparable magnitudes:
10: |ca| ≤ 2|cb| for all a, b ∈ Jl
11: Merge Supports:
12: Λ[i] = Λ[i−1] ∪ J∗
13: Update:

14: x̂
[i]

Λ[i] = arg minx ‖y −ΦΛ[i]x‖2
15: r[i] = y −ΦΛ[i] x̂

[i]

Λ[i]

16: end for
17: end procedure

where L is the number of atoms selected at each iteration, and J∗(l) is the index of the l-th
largest absolute value of the entries of c explicitly defined as

J∗(l) = arg max
j\{J∗(l−1),...,J∗(1)}

|cj |. (18)

For the noise-free measurement scenario, the RIP order of LK with

δLK <

√
L√

K + 3
√
L
, (K > 1) (19)

is a sufficient condition for gOMP to obtain an exact recovery of any K-sparse vector within
K iterations [26]. A performance bound on the estimation error for the signal reconstruction
in the presence of noise was also derived in [26].

2.1.4 Regularised OMP (ROMP)

An alternative modification on the identification step was proposed in the ROMP algorithm [23,
31] which, at each iteration, selects K largest entries of the correlation c and groups them
into subsets Jl with comparable magnitudes:

|ca| ≤ 2|cb| for all a, b ∈ Jl. (20)

ROMP then selects the set Jl with the maximum energy ‖cJl
‖2. The algorithm is summarised

in Algorithm 5.

In contrast to OMP and its aforementioned variants, ROMP enjoys uniform recovery guaran-
tees [23]. In particular, the RIP of order 2K with

δ2K < 0.03/
√

logK (21)

8
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is the sufficient condition for ROMP to exactly reconstruct any K-sparse signal x from its
noise-free measurement y = Φx [23]. For the scenario with the presence of noise n in the
measurement y = Φx + n, the theoretical performance bound of ROMP is given by

‖x̂− x‖2 ≤ 104
√

logK‖n‖2, (22)

as discussed in [31]. In fact, the logarithmic factor in this expression yields a stronger the-
oretical requirement for the RIP compared to that of the l1-minimisation methods [29, 31].
However, from a practical point of view, one may be more interested in the average per-
formance than the worse case performance provided by these theoretical analyses. It was
empirically demonstrated in [29] that the average performance of ROMP was notably worse
than OMP and StOMP.

The computation for one iteration of ROMP is slightly more demanding than that of OMP
due to the differences in the identification and regularisation steps. The selection of K largest
elements of c can be done via a sorting algorithm which typically requires a complexity of
O(N logN) [31]. Since the selected support set J is already sorted, the regularisation step
can be performed effectively by searching over consecutive intervals of J , and thus it only
requires the complexity of O(K) [31]. However, ROMP may select multiple atoms at a time.
As a result, ROMP may require less run time than OMP if a smaller number of iterations is
required for ROMP to achieve the same sparsity level (i.e., same number of non-zero elements)
in the solution.

2.1.5 Compressive Sampling MP (CoSaMP) & Subspace Pursuit (SP)

In contrast to the other aforementioned variants of OMP which only focus on the modifica-
tion to the identification step of OMP, the CoSaMP algorithm proposed in [32] and the SP
algorithm proposed in [24] include an additional pruning step in each iteration. The CoSaMP
and SP algorithms are summarised in Algorithm 6. The main idea behind CoSaMP and SP is
that they maintain a fixed number of nonzero elements in each active set Λ[i] for each iteration
by removing insignificant elements via the pruning step.

Note that, in the other greedy algorithms previously described, once an atom is selected, it
will always stay in the active set until the algorithm terminates. Specifically, the pruning
step in CoSaMP and SP only retains K largest entries in the least-squares optimisation for
the merged support set Λ[i]. CoSaMP and SP then re-estimate the least-squares solution
corresponding to the retained support set Λ̃[i]. The only difference between CoSaMP and SP
is that CoSaMP adds 2K new atoms to the active support set in the identification step while
SP only adds K new atoms.

The main advantage of these two algorithms is that they are not computationally complex
and provide strong theoretical guarantees that are comparable to those derived for the convex
l1-optimisation methods [21, 24, 32]. However, the drawback of CoSaMP and SP is that they
require the knowledge of the sparsity level K as an input, which may not be known a priori
in practice.
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Algorithm 6 CoSaMP and SP Algorithms

1: procedure Input: y, Φ, K. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅, Λ̃[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: J∗ = {indices of the 2K largest elements of c} (CoSaMP)
7: or J∗ = {indices of the K largest elements of c} (SP)
8: Merge Supports:
9: Λ[i] = Λ̃[i−1] ∪ J∗

10: Estimate Least Squares (LS) Solution:

11: x̂
[i]

Λ[i] = arg minx ‖y −ΦΛ[i]x‖2
12: Pruning:

13: Λ̃[i] = {indices of the K largest elements of x̂
[i]

Λ[i]}
14: Update:

15: x̂
[i]

Λ̃[i]
= arg minx ‖y −ΦΛ̃[i]x‖2

16: r[i] = y −ΦΛ̃[i] x̂
[i]

Λ̃[i]

17: end for
18: end procedure

2.1.6 Gradient Pursuit (GP), Conjugate GP (CGP) & Stagewise Weak
CGP(SWCGP)

Another trend of greedy pursuit technique based on directional updates was proposed in [29,
30], namely GP, CGP and SWCGP. The main idea behind these directional algorithms is
that they exploit directional optimisation to update the coefficients of the selected elements
in each iteration instead of using orthogonal projection, i.e., least-squares estimation, as in
OMP and its variations. The replacement of the costly orthogonal projection by the directional
optimisation leads to computationally more efficient algorithms while still retaining similar
performance as OMP. Directional optimisation refers to an iterative technique of finding a
local minimum of a given cost function by starting with an initial point in the parameter
space and moving towards the direction that minimises the cost function. A great example
of directional optimisation is the gradient method where the update direction is determined
by the gradient of the cost function at the current point.

The expression of directional update is [29, 30]

x̂
[i]

Λ[i] = x̂
[i−1]

Λ[i] + a[i]d
[i]

Λ[i] (23)

where d
[i]

Λ[i] is the update direction and a[i] is the step size. The optimal value of the step

size a[i] to minimise ‖y −Φx̂[i]‖22 over all x̂[i] with support Λ[i] (i.e., the same quadratic cost
as in OMP) is explicitly given by [30, 47]

a[i] =
〈r[i],b[i]〉
‖b[i]‖22

(24)

10
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Algorithm 7 Gradient Pursuit Algorithm

1: procedure Input: y, Φ. Output: r[i], x̂[i]

2: Initialisations: r[0] = y, x̂[0] = 0, Λ[0] = ∅.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Identify:
5: c = ΦT r[i−1]

6: j∗ = arg maxj |cj |
7: Merge Supports:
8: Λ[i] = Λ[i−1] ∪ j∗
9: Directional Update:

10: compute d
[i]

Λ[i] (see text for details)

11: b[i] = ΦΛ[i]d
[i]

Λ[i] , a
[i] = 〈r[i],b[i]〉

‖b[i]‖22
12: x̂

[i]

Λ[i] = x̂
[i−1]

Λ[i] + a[i]d
[i]

Λ[i]

13: r[i] = r[i−1] − a[i]b[i]

14: end for
15: end procedure

where b[i] = ΦΛ[i]d
[i]

Λ[i] and 〈·〉 denotes the inner product operation. The pseudocode for
directional pursuit family is given in Algorithm 7. Note that MP and OMP can be naturally
cast into the framework of directional pursuit with update directions of δj[i] and Φ†

Λ[i]cΛ[i] (the
superscript † denotes the matrix pseudoinverse operation).

GP utilises the negative gradient of the cost quadratic cost function ‖y−Φx̂[i]‖22 as the update
direction [30]

d
[i]

Λ[i] = ΦT
Λ[i](y −ΦΛ[i] x̂

[i−1]

Λ[i] ) = cΛ[i] (25)

where cΛ[i] is a subvector of c with support Λ[i].

On the other hand, the directional update in CGP exploits the conjugate gradient method
which is widely used to solve quadratic optimisation problems [47]. Fundamentally, to min-
imise a cost function of (1/2)xTGx−yTx (i.e., equivalent to solving y = Gx for x), the con-
jugate gradient method successively applies line minimisations along directions which are G-
conjugate, where set of directions {d[1],d[2], . . . ,d[i]} is defined as G-conjugate if 〈d[i],Gd[j]〉 =
0 for all i 6= j. Note that 〈·, ·〉 denotes the inner product between two vectors. In the frame-
work of directional pursuit, CGP aims to minimise the cost function of ‖y −ΦΛ[i]xΛ[i]‖22 by
calculating an update direction that is GΛ[i]-conjugate to all previous update directions. Here,
GΛ[i] = ΦT

Λ[i]ΦΛ[i] .

The main advantage of the conjugate gradient method is that the conjugate directions can be
computed iteratively using

d[i] = c[i] + β[i]d[i−1] (26)

if the first conjugate direction is initialised to d[1] = −c[1]. Here, β[i] is given by β[i] =
〈c[i],Gd[i−1]〉/〈d[i−1],Gd[i−1]〉 to ensure 〈d[i],Gd[i−1]〉 = 0. It is important to note that this
procedure leads to d[i] conjugate to all previous directions d[1], . . . ,d[i−1]. This principle is
adopted to compute the update direction of CGP, i.e.,

d
[i]

Λ[i] = c
[i]

Λ[i] + β[i]d
[i−1]

Λ[i] (27)
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where

β[i] =

〈
(ΦΛ[i−1]d

[i−1]

Λ[i−1]), (ΦΛ[i]cΛ[i])
〉

‖ΦΛ[i−1]d
[i−1]

Λ[i−1]‖22
. (28)

However, in contrast to that in (26), the iterative procedure in (27) only guarantees the

conjugacy of d
[i]

Λ[i] to the last preceding direction d
[i−1]

Λ[i−1] but not to all the previous directions
because the dimensionality of the solution space varies over iterations. Therefore, using (27)
leads to an approximate version of CGP (referred to as CGP throughout this report for
simplicity). The more sophisticated version of CGP can be found in [29], where each new
direction is calculated to ensure the conjugacy with all previous directions. However, this
version is computationally more complex than the approximated CGP.

In common with MP, the identification step of GP requires a matrix vector multiplication
and N operations. Computing the size step for the directional update of GP requires an

extra matrix vector multiplication and 2M operations [30]. In addition, updating x̂
[i]

Λ[i] takes

k operations where k is the size of the current support set, and updating the residual r[i]

can be done via M operations. On the other hand, compared to GP, CGP requires extra
computations to compute the update direction d[i] including one additional matrix vector
multiplication and M + k additional operations [30].

Similar to MP and OMP, GP and CGP only selects a single element at each iteration making
it not suitable for large-scale problems in terms of computational performance. Motivated
by this issue, a stagewise weak version of CGP (SWCGP) was proposed in [30] allowing
multiple elements to be selected at each iteration. Since the extension of CGP to SWCGP is
analogous with the extension of OMP to SWOMP which has been discussed in Section 2.1.3,
the details of SWCGP is omitted here. The interested readers may refer to [30] for more
detailed description of SWCGP.

2.1.7 Stopping Criteria for Greedy Algorithms

Several criteria can be used as halting rules for the greedy algorithms. The first option is to
stop the greedy algorithms when the l2-norm of the residual r[i] falls below a preset threshold.
This criterion aims to achieve a certain bound on the reconstruction error.

The second criterion is based on the sparsity level of the solution vector x̂[i], i.e., the number
of nonzero elements in the solution vector. This stopping criterion is normally used when the
sparsity level of the actual solution is a priori known or a fixed number of elements is desired
to approximate the solution.

The greedy algorithms can also be halted when the change in the l2-norm of residual or
the maximum correlation between the residual and the atoms fall below some threshold.
These two criteria ensure the greedy algorithms achieve a certain bound on the reconstruction
error. Depending on the applications, one or more criteria can be applied to the greedy
algorithms.

12
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Algorithm 8 IRLS Algorithm

1: procedure Input: y, Φ, K. Output: r[i], x̂[i]

2: Initialisations: x̂[0] = Φ†y, ϑ[1] = 1.
3: for iteration i = 1; i := i+ 1 until stopping criterion is met do
4: Compute Weights:

5: w
[i]
j = ((|x̂[i−1]

j |)2 + ϑ[i−1])p/2−1 (j = 1, . . . , N)
6: Solution for l2-norm Objective:
7: x̂[i] = Q[i]ΦT (ΦQ[i]ΦT )−1y

8: where Q[i] is the diagonal matrix with entries of 1/w
[i]
j

9: Updating the Regularisation Parameter:
10: if (‖x̂[i]‖2 − ‖x̂[i−1]‖2) <

√
ϑ[i]/100 then

11: ϑ[i+1] = ϑ[i]/10
12: else
13: ϑ[i+1] = ϑ[i]

14: end if
15: end for
16: end procedure

2.2 l1-Minimisation Algorithms

The l1-minimisation approach with the formulation defined in (5) provides a powerful frame-
work for sparse signal recovery with strong theoretical performance guarantees. If the sensing
matrix Φ satisfies a certain restricted isometry property (RIP), a stable solution of the sparse
signal recovery problem is guaranteed to be obtained through the l1-minimisation. For the
case of noise-free signal recovery with B(y) = {x : Φx = y}, the l1-minimisation can recover
any K-sparse signal x exactly from as few as O(K log(N/K)) measurements if the sensing
matrix Φ satisfies the RIP of order 2K with δ2K <

√
2 − 1 [17, 18]. For the case of noisy

signal recovery with B(y) = {x : ‖y − Φx‖2 < ε}, the accuracy of the solution x̂ to (5) is
bounded by

‖x̂− x‖2 ≤ C0
‖x− x∗K‖1√

K
+ C1ε, (29)

where

C0 = 2
1− (1−

√
2) δ2K

1− (1 +
√

2) δ2K

, C1 = 4

√
1 + δ2K

1− (1 +
√

2) δ2K

, (30)

if the sensing matrix Φ satisfies the RIP of order 2K with δ2K <
√

2−1 [18]. Here x∗K denotes
the best K-sparse approximation of x.

Along with provable performance guarantees, the l1-minimisation formulation (5) is a convex
optimisation problem which generally can be solved effectively via any general-purpose convex
optimisation techniques [48, 49]. Specifically, the l1-minimisation can be posed as a linear
program for B(y) = {x : Φx = y}, or it can be considered as a convex program with a conic
constraint for B(y) = {x : ‖y −Φx‖2 < ε}.

In addition to the l1-minimisation formulation, there exists the unconstrained l1-minimisation
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formulation which has also received great attention in the literature (see [20, 50–53]):

x̂ = arg min
x∈CN

{
1

2
‖y −Φx‖22 + λ‖x‖1

}
, (31)

which is commonly referred to as the l1-penalty formulation. This l1-penalty formulation is
the core of the well-known basis pursuit denoising (BPDN) algorithm proposed in [53]. In fact,
the use of l1-penalty has a long history outlined in [20]. Here the parameter λ controls the
tradeoff between the approximation error and the sparsity of the approximation vector. In fact,
the l1-penalisation formulation (31) is equivalent to the l1-minimisation formulation (5) with
B(y) = {x : ‖y−Φx‖2 < ε} for some particular value of λ [54]. However, the value of λ, which
yields the equivalence between these formulations, is generally unknown. Several methods for
determining λ are available in [53, 55, 56]. Moreover, the l1-penalty optimisation (31) is also
equivalent to

x̂ = arg min
x∈CN

‖y −Φx‖22 subject to ‖x‖1 ≤ t, (32)

for appropriate values of λ. Here, t is a positive parameter which is inversely related to λ.
In contrast to the l1-minimisation which is a quadratically constrained linear program, the
optimisation in (32) is a quadratic program. This formulation in fact is used in the least
absolute shrinkage and selection operator (LASSO) approach [52].

2.3 lp-Minimisation Algorithms with p < 1

The lp-minimisation approach aims to minimise the lp-norm (p < 1) of the estimate x̂,

x̂ = arg min
x∈CN

‖x‖p subject to x ∈ B(y). (33)

In fact, the works in [33–35] focused on the case of noise-free measurements y = Φx, i.e.,
B(y) = {x : Φx = y}. It is empirically demonstrated in [33] that exact recovery of sparse
signals can be achieved with substantially fewer measurements by replacing the l1-norm by the
lp-norm with p < 1. In addition, the theoretical RIP condition of Φ for the lp-minimisation
to produce an exact reconstruction of x is [33]

δaK + bδ(a+1)K < b− 1 (34)

where

b > 1, a = bp/(2−p), with p ∈ (0, 1]. (35)

In fact, this is the generalisation of the RIP condition for p = 1 and b = 3 presented in [17].
More importantly, this result implies that a weaker condition for exact recovery is obtained
for smaller p [33]. Moreover, for the case of random Gaussian sensing matrix Φ, the lp-
minimisation with p ∈ (0, 1] can recover exactly any K-sparse signal x with probability
exceeding 1− 1

/ (
N
K

)
given that [34]

M ≥ C1(p)K + pC2(p)K log(N/K), (36)

where the constant C1 and C2 are determined explicitly and are bounded in p.
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The lp-minimisation with p < 1 is a non-convex problem which is intractable as a direct
problem, as described in the literature [34]. However, when it is cast as a re-weighted least
squares (IRLS) problem, it can be solved via an iterative approach [34, 35]. The main idea
behind IRLS is that it replaces the lp objective function in (33) by a weighted l2-norm:

x̂[i] = arg min
x∈CN

N∑
j=1

w
[i]
j x2

j subject to Φx = y (37)

where the weights w
[i]
j (j = 1, . . . , N) are computed from x̂[i−1] obtained from the previous

iteration. The l2 objective in (37) becomes the first-order approximation of the lp objective

in (33) when w
[i]
j = |x̂[i−1]

j |p−2. However, a regularisation parameter ϑ is introduced to improve
the estimation performance [34, 35]:

w
[i]
j =

[
(|x̂[i−1]

j |)2 + ϑ[i−1]
]p/2−1

. (38)

The full description of the algorithm is given in Algorithm 8. Note that this ϑ-regularised
IRLS algorithm becomes the FOCUSS algorithm in [57] if the ϑ-regularisation strategy is
removed. However, numerical results in [35] show that the performance of the ϑ-regularised
IRLS algorithm is significantly superior over the performance of the FOCUSS algorithm.

3 Comparative Performance Study

In this section, we focus our attention on the greedy pursuit family and present a performance
comparison of different greedy pursuit algorithms in which the dictionary is built from tilted-
wire atoms—the exact solutions of the tilted-wire scatterer model.

3.1 Signal Analysis of Rotating Blades

The scattered signal s(t) in the time domain t received from a rotating blade can be decom-
posed as the weighted sum of K tilted-wire components [13, 14],

s(t) =
K∑
k=1

ρk g(t;ϑk), (39)

where

g(t;ϑk) = g(t; rk, ψk, Lk, αk)

= A sinc

{
bLk

2
sin(Ωt+ ψk + αk)

}
exp{ibrk sin(Ωkt+ ψk)} (40)

is the tilted-wire scatterer model of the received signal from a tilted straight wire of length
Lk with radial distance rk to its mid-point from the origin as depicted in Figure 1, while ρk
is its (generally complex-valued) coefficient. The wire rotates around the origin with angular
velocity Ω from initial angle ψk, and is tilted at a fixed angle αk. In (40), A is the normalisation
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Figure 1: Tilted wire geometry (radar is located in the positive-y direction.)

constant, and the parameter b is defined by b = 4π/λ with λ being the wavelength of the radar
signal.

In the context of compressed sensing, we refer to g(t;ϑk) as a ‘tilted-wire atom’. Note
that sinc() is the unnormalized sinc function, and i =

√
−1. Writing (39) in vector form

yields

s =

K∑
k=1

ρk gk, (41)

where

s = [s(t1), . . . , s(tN )]T , and gk = [g(t1,ϑk), . . . , g(tN ,ϑk)]T (42)

are vectors of N discrete-time samples of s(t) and g(t,ϑk) respectively. Since an object can
be represented as a small number of scattering elements, the problem of radar imaging for
rotating blades can be cast into the sparse signal representation problem over an over complete
library of tilted-wire atoms. Specifically, the aim is to find a sparse solution of the coefficient
vector

ρ = [ρ1, . . . , ρm]T (43)

from

s = Gρ, (44)

where the dictionary

G = [g1, . . . ,gM ] (45)

consists of M tilted-wire atoms spanning over a discrete (generally 4-dimensional) grid of
parameters ϑk. Note that, since the scattering characteristics from the approaching edges
(i.e., resulting positive Doppler frequency) are different to those from the receding edges, the
positive and negative Doppler flashes are processed separately [14]. This can be done by
including both positive and negative radius values [14].
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3.2 Results With Simulated Data

Consider a simulated helicopter rotor system with three blades rotating at 40 rad/s, with each
blade consisting of three wires with parameters given in Table 1. The parameter grids used
for constructing the function dictionary G are 1 ≤ L ≤ 5 m in steps of 0.5 m, −4 ≤ r ≤ 4 m
in steps of 0.5 m, −1◦ ≤ α ≤ 1◦ in steps of 0.5◦, and ψ spanning over a interval of ±5◦ in
steps of 0.5◦ around −12.5◦, −132.5◦ and 107.5◦, which are the angular positions ψ of the
blades when they are orthogonal to the radar. The wire parameters have been selected such
that they are relatively very close in the physical parameter space, resulting in a significant
level of correlation among ‘nearby’ atoms in the dictionary.

Table 1: Tilted-wire parameters used for the target model.

Blade Wire Weighting Coeff. ψ (deg) α (deg) r (m) L (m)

1 4.5 -12 -0.5 2.5 3
1 2 5 -12.5 0 3 4

3 4 -13 0 1.5 3

1 4.5 -132 -0.5 2.5 3
2 2 5 -132.5 0 3 4

3 4 -133 0 1.5 3

1 4.5 108 -0.5 2.5 3
3 2 5 107.5 0 3 4

3 4 107 0 1.5 3

(a) Orientation of the three wires (b) Exploded view of a single wire

Figure 2: Scatter plots of the target model showing the orientation and length of the 3 tilted
wires. Color bar indicates the amplitude of the wire coefficients.
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Figure 2 is a plot of the 3-bladed rotor showing the orientation and length of each wire. The
synthetic data for the received signal, obtained by a pulse-Doppler radar operating at the
transmitted frequency of 9.5 GHz and the pulse repetition frequency (PRF) of 66 kHz, is
generated using (39) for one cycle of rotor rotation. The signal-to-noise ratio (SNR) is set to
20 dB. The time-domain and spectrogram plots of the synthetic received signal are given in
Figure 3.

Figure 3: Time-domain and spectrogram plots of the synthetic signal.

Figure 4 shows the comparison in the time domain of the reconstructed signals obtained
by MP, OMP, CGP, gOMP, CoSaMP and ROMP for a single Monte Carlo (MC) run. In
the frequency domain, the techniques appear almost the same, with no physically significant
differences. Figure 5 provides the corresponding scatter plots of all tilted-wire atoms found in
the signal representation. Taking into account the relative magnitudes of representing atoms,
again the techniques produce very similar results. Here, the results in Figures 4-5 are obtained
using 12 atoms per blade flash. These results indicate, at least qualitatively, that even when
the scatterers are very close together in the spatial parameter space, the MP, OMP, CGP,
and CoSaMP techniques still perform quite satisfactorily at least in term of representing the
original signal in time domain.

Figures 6–8 show the root-mean-squared-error (RMSE) of the reconstruction signal and the
averaged running time versus the sparsity level in the solution vector for MP, OMP, CGP,
gOMP, CoSaMP and ROMP. The RMSE of the reconstructed signal is computed over short
intervals with 51 samples around the six main blade flashes and is normalised by the l2-norm
of the original signal in the corresponding intervals. The sparsity level in the solution vector
means the number of collected atoms for each blade flash. Here, the results in Figures 6–8
were obtained using 50 MC runs.

A general indication observable from these results is as follows: OMP is the most accurate
(smallest reconstruction error in a least-squares sense) but most computationally expensive.
CGP is very similar to OMP in terms of accuracy performance, especially for high sparsity
levels, and with approximately one third the computational cost of OMP. MP is simple, as
fast as CGP, but with an error of about 70 or 80 percent larger than that of OMP. The other
techniques are as fast as CGP but with excessive errors, at least for this particular simulated
target model.
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Figure 4: Comparison in time domain of the reconstructed signals (red trace) and the original
signal (blue trace) around the first blade flash of the simulated data, for each of the
greedy algorithms.
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Figure 5: Scatter plots of the extracted tilted-wire atoms representing the simulated signal,
with each of the greedy algorithms. Color bar indicates the atom amplitude.
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Figure 6: Normalised reconstruction error and running time after processing synthetic data
using MP, OMP and CGP.

Figure 7: Normalised reconstruction error and running time after processing synthetic data
using gOMP.

Figure 8: Normalised reconstruction error and running time after processing synthetic data
using ROMP, CoSaMP and OMP.
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3.3 Results With Real Data

This section uses real data from a 3-bladed Squirrel helicopter collected with an experimental
radar operating at the frequency of 9.5 GHz and the PRF of 66 kHz. The raw signal is high-
pass filtered to attenuate low-frequency components. The rotation speed and the number of
rotor blades are estimated based on [58]. A rough estimate of the initial angles of the blades
are also obtained based on the location of the main blade flashes in the time-domain signal.
Figure 9 displays the time-domain and spectrogram plots of the preprocessed signal. Though
the pre-processed signal contains all return components from the helicopter which include the
main rotor, tail rotor, rotor hub, and the fuselage (or aircraft body), only the main rotor
blades will be analysed in this study.

The function dictionary used here is constructed from a parameter grid for ψ spanning over
interval of ±5◦ in steps of 0.5◦ around these initial angle estimates. The same parameter
grids for L, r and α are used as in Section 3.2 for the simulated data example. Here, a
coherent processing interval of 150 ms is used corresponding to approximately one cycle of
rotor revolution.

Figures 10 and 11 show the time-domain and frequency-domain plots of the reconstructed
signals obtained by MP, OMP, CGP, gOMP, CoSaMP and ROMP as compared to the original
real signal. The agreement is reasonable though not as close as in the simulated example,
which can be attributed to various real effects: a real rotor blade in flight deviates signifantly
from the straight and static shape – it flaps and bends in a rather random and chaotic manner,
as can be verified elsewhere [59]. Another interesting observation is that the components in
lower Doppler frequency regions near the rotor hub were picked up by MP, OMP, and CGP,
but not by the other techniques. Note that MP, OMP, and CGP pick up only one atom in the
Identify step of each iteration, whereas the other techniques pick up multiple atoms.

Figure 12 provides the corresponding scatter plots showing the wire model parameters for
all the collected atoms. Again, the results in Figures 10-12 are obtained using 12 atoms per
flash. The relative accuracies of these techniques can be qualitatively assessed through the
locations of the wire elements: MP, OMP, and CGP produce reasonable wire-frame images,
while CoSaMP is the worst.

The quantitative results in Figures 13–15 confirm the above qualitative assessment. As before,
these plots show the normalised l2-norm of the reconstruction error and the running time
versus the sparsity level in the solution vector for MP, OMP, CGP, gOMP, CoSaMP and
ROMP. The l2-norm of the reconstruction error is computed over short intervals with 51
samples around the six main blade flashes and is normalised by the l2-norm of the original
signal in the corresponding intervals. The sparsity level in the solution vector means the
number of collected atoms for each flash.
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Figure 9: Time-domain and spectrogram (frequency-domain) plots of the Squirrel helicopter
data.

Figure 10: Comparison in the time domain of the reconstructed signals (red line) and the
original signal (blue line) around the first blade flash in real data, for each of the
greedy algorithms.
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Figure 11: Spectrogram plots of the reconstructed signals after processing real data with each
of the greedy algorithms.
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Figure 12: Scatter plots showing the tilted-wire atom parameters after processing real data
with each of the greedy algorithms. Color bar indicates the amplitude of the atom
coefficients.
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Figure 13: Normalised reconstruction error and running time after processing real data using
MP, OMP and CGP.

Figure 14: Normalised reconstruction error and running time after processing real data using
gOMP.

Figure 15: Normalised reconstruction error and running time after processing real data using
ROMP, CoSaMP and OMP.
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3.4 Further Discussion

The report documents a comprehensive survey of the currently known sparsity-based signal
processing techniques. From the results for both simulated and real data, we observe that
OMP, MP and CGP exhibit similar performance where OMP is slightly superior than MP
and CGP. However, OMP takes much longer time to run compared to that of MP and CGP.
Since CGP only performs a single gradient update at each iteration, CGP requires a sufficient
number of iterations to converge to the ‘correct’ least-squares solution. For that reason, CGP
performs worse than OMP for low sparsity levels of the solution vector. On the other hand,
for sufficiently large sparsity in the solution vector, CGP performs very similar to OMP while
it is more efficient in terms of computation.

The results also suggest that, by allowing the selection of multiple atoms in each iteration,
gOMP gains significant reduction in runtime compared to OMP. However, this computational
advantage comes at the expense of performance degradation as expected. A similar trend
was observed for stOMP, SWOMP and SWCGP. The performance of stOMP, SWOMP and
SWCGP, however, is not shown here as they are similar, at least for these examples. In
addition, although providing very strong theoretical guarantees, it is observed that ROMP,
SP and CoSaMP do not perform well compared to OMP. Note that, due to the similarity with
SP and CoSaMP, only the performance of CoSaMP is included in this report. The common
feature of gOMP, SWOMP, SWCGP, ROMP, SP and CoSaMP is that they select multiple
new atoms at a time. However, for the particular problem of radar imaging of rotating
blades, selecting multiple atoms is not desirable because the function dictionary G may be
constructed from fairly dense grids of L, r, ψ and α. As the result, along with the correct
atom, these algorithms may select other atoms which are closely located with the correct one,
disrupting the accuracy of the representation.

Figures 16-21 showing the evolution of collected atoms with iteration index provide further
insight into the behaviour of the techniques. Here, the algorithms for MP, OMP, CGP, gOMP
and ROMP terminate when 10 atoms are selected while CoSaMP terminates when the l2-
norm of the signal reconstruction error dips below a certain threshold. Note that the stopping
criterion based on the sparsity level in the solution vector is not appropriate for CoSaMP
because it maintains a fixed sparsity level in the solution vector over iterations by removing
insignificant atoms via the pruning step. In Figures 16-21, the magnitude of coefficient is
color coded and the coordinate system has been rotated so that the blade is oriented upward.
As shown in Figures 16-18, for the greedy algorithms (i.e., MP, OMP and CGP) which select
a single atoms at a time, the coefficients of the collected atoms are very stable over iterations.
On the other hand, gOMP, ROMP and CoSaMP select a group of atoms which are closely
located as shown in Figures 19-21. As a result, along with the ‘most matched’ atom, these
algorithms tend to also select other incorrect atoms ‘nearby’. This is a plausible explanation
for the performance degradation of gOMP, ROMP and CoSaMP compared to OMP.

We have also carried out other simulation runs where the true scatterers are more separated,
the performances of the techniques become more comparable; however, this does deviate from
the current interest and will be further investigated in future studies.
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Figure 16: Scatter plots showing the evolution of atom parameters extracted using MP.

Figure 17: Scatter plots showing the evolution of atom parameters extracted using OMP.
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Figure 18: Scatter plots showing the evolution of atom parameters extracted using CGP.

Figure 19: Scatter plots showing the evolution of atom parameters extracted using gOMP.

Figure 20: Scatter plots showing the evolution of atom parameters extracted using ROMP.
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Figure 21: Scatter plots showing the evolution of atom parameters extracted using CoSaMP.

4 Conclusion

This report is part of a study on techniques for the analysis of radar backscatter from fast
rotating blade-like objects using sparsity-based approaches in which the function dictionary is
based on the exact solution of the tilted-wire scatterer model in two spatial dimensions. Three
classes of sparse recovery algorithms were reviewed, based on the greedy, l1-minimisation and
lp-minimisation (p < 1) methods. However, most of the report focuses on the performance
and computational cost of the greedy algorithms.

Using both simulated and real radar data, this preliminary study found that those greedy
algorithms that select multiple atoms at each iteration perform poorly in terms of high error
in the signal reconstruction, although the computational cost is generally many times lower;
these include the techniques of gOMP, SWOMP, SWCGP, ROMP, SP and CoSaMP. On the
contrary, the techniques of MP, OMP, and CGP which select only one atom at each iteration
perform better in terms of representation error, although with a higher computational cost.
In particular, the CGP is computationally much more efficient than the OMP and yet exhibits
a very similar performance to the OMP. Thus, in terms of performance-versus-computational
cost trade-off, the CGP is the algorithm of choice for sparse analysis of narrowband radar
backscatter from helicopter blades. This conclusion is valid at least for the cases where high
correlation exists among the atoms of the underlying dictionary, which arises from closely
spaced scatterers in the spatial domain.

Further investigation is currently underway and will be reported in future publications.
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